Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
New Microbiol ; 46(2): 170-185, 2023 May.
Article in English | MEDLINE | ID: covidwho-20232751

ABSTRACT

The effects of clinical symptoms, laboratory indicators, and comorbidity status of SARS-CoV-2-infected patients on the severity of disease and the risk of death were investigated. Questionnaires and electronic medical records of 371 hospitalized COVID-19 patients were used for data collection (demographics, clinical manifestation, comorbidities, laboratory data). Association among categorical variables was determined using Kolmogorov-Smirnov test (P-value ≤0.05). Median age of study population (249 males, 122 females) was 65 years. Roc curves analysis found that age ≥64 years and age ≥67 years are significant cut-offs identifying patients with more severe disease and mortality at 30 days. CRP values at cut-off ≥80.7 and ≥95.8 significantly identify patients with more severe disease and mortality. Patients with more severe disease and risk of death were significantly identified with platelet value at the cut-off ≤160,000, hemoglobin value at the cut-off ≤11.7, D-Dimer values ≥1383 and ≥1270, and with values of neutrophil granulocytes (≥8.2 and ≤2) and lymphocytes (≤2 and ≤2.4). Detailed clinical investigation suggests granulocytes together with lymphopenia may be a potential indicator for diagnosis. Older age, several comorbidities (cancer, cardiovascular diseases, hypertension) and more laboratory abnormalities (CRP, D-Dimer, platelets, hemoglobin) were associated with development of more severity and mortality among COVID-19 patients.


Subject(s)
COVID-19 , Male , Female , Humans , Aged , Middle Aged , COVID-19/epidemiology , SARS-CoV-2 , Iraq/epidemiology , Retrospective Studies , Comorbidity , Risk Factors , Patient Acuity
2.
Molecules ; 27(23)2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2143398

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the seventh known human coronavirus, and it was identified in Wuhan, Hubei province, China, in 2020. It caused the highly contagious disease called coronavirus disease 2019 (COVID-19), declared a global pandemic by the World Health Organization (WHO) on 11 March 2020. A great number of studies in the search of new therapies and vaccines have been carried out in these three long years, producing a series of successes; however, the need for more effective vaccines, therapies and other solutions is still being pursued. This review represents a tracking shot of the current pharmacological therapies used for the treatment of COVID-19.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2 , Pandemics/prevention & control , China
3.
Foods ; 11(18)2022 Sep 17.
Article in English | MEDLINE | ID: covidwho-2043646

ABSTRACT

The beginning of the end or the end of the beginning? After two years mastered by coronavirus disease 19 (COVID-19) pandemic, we are now witnessing a turnaround. The reduction of severe cases and deaths from COVID-19 led to increasing importance of a new disease called post-COVID syndrome. The term post-COVID is used to indicate permanency of symptoms in patients who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Immune, antiviral, antimicrobial therapies, as well as ozone therapy have been used to treat COVID-19 disease. Vaccines have then become available and administered worldwide to prevent the insurgence of the disease. However, the pandemic is not over yet at all given the emergence of new omicron variants. New therapeutic strategies are urgently needed. In this view, great interest was found in nutraceutical products, including vitamins (C, D, and E), minerals (zinc), melatonin, probiotics, flavonoids (quercetin), and curcumin. This review summarizes the role of nutraceuticals in the prevention and/or treatment of COVID-19 disease and post-COVID syndrome.

4.
Antibiotics (Basel) ; 11(7)2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-1938671

ABSTRACT

These days, most of our attention has been focused on the COVID-19 pandemic, and we have often neglected what is happening in the environment. For instance, the bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy, called Olive Quick Decline Syndrome (OQDS), specifically caused by X. fastidiosa subspecies pauca ST53, which affects the Salento olive trees (Apulia, South-East Italy). This bacterium, transmitted by the insect Philaenus spumarius, is negatively reshaping the Salento landscape and has had a very high impact in the production of olives, leading to an increase of olive oil prices, thus new studies to curb this bacterium are urgently needed. Thidiazuron (TDZ), a diphenylurea (N-phenyl-1,2,3-thiadiazol-5-yl urea), has gained considerable attention in recent decades due to its efficient role in plant cell and tissue culture, being the most suitable growth regulator for rapid and effective plant production in vitro. Its biological activity against bacteria, fungi and biofilms has also been described, and the use of this low-cost compound to fight OQDS may be an intriguing idea.

5.
Diseases ; 10(2)2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1809767

ABSTRACT

(1) Background: The production of anti-SARS-CoV-2 antibodies should help minimize the severity of COVID-19 disease. Our focus was to investigate and compare different vaccination schedules, monitoring circulating S-RBD Ab (antibodies anti-Spike protein-Receptor Binding Domain) levels after administering two doses in naïve patients. Likewise, vaccine-stimulated immunity in naïve and previously infected patients was compared. (2) Methods: We included 392 patients. Sera were evaluated by Elecsys anti-SARS-CoV-2 S. Statistical analyses were conducted by MedCalc and JASP. (3) Results: In COVID-19 patients, the median value of Ab levels was 154 BAU/mL, stable up to 9 months after the infection. From the data observed in vaccinated patients, higher median values were recorded in COVID-19/Pfizer BioNTech (18913 BAU/mL) than in other groups (Pfizer BioNTech: 1841; ChadOx1 961; heterologous vaccination: 2687) BAU/mL. (4) Conclusions: In conclusion, a single booster dose given to previously infected patients raised an antibody response much higher than two doses given to naïve individuals and heterologous vaccination generated a robust persistent antibody response at high levels, steady up to three months after administration.

6.
Viruses ; 14(3)2022 03 10.
Article in English | MEDLINE | ID: covidwho-1742722

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the Coronavirus family which caused the worldwide pandemic of human respiratory illness coronavirus disease 2019 (COVID-19). Presumably emerging at the end of 2019, it poses a severe threat to public health and safety, with a high incidence of transmission, predominately through aerosols and/or direct contact with infected surfaces. In 2020, the search for vaccines began, leading to the obtaining of, to date, about twenty COVID-19 vaccines approved for use in at least one country. However, COVID-19 continues to spread and new genetic mutations and variants have been discovered, requiring pharmacological treatments. The most common therapies for COVID-19 are represented by antiviral and antimalarial agents, antibiotics, immunomodulators, angiotensin II receptor blockers, bradykinin B2 receptor antagonists and corticosteroids. In addition, nutraceuticals, vitamins D and C, omega-3 fatty acids and probiotics are under study. Finally, drug repositioning, which concerns the investigation of existing drugs for new therapeutic target indications, has been widely proposed in the literature for COVID-19 therapies. Considering the importance of this ongoing global public health emergency, this review aims to offer a synthetic up-to-date overview regarding diagnoses, variants and vaccines for COVID-19, with particular attention paid to the adopted treatments.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Vaccines , Drug Design , Humans , SARS-CoV-2/genetics
7.
Molecules ; 27(3)2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-1625062

ABSTRACT

Multidrug resistance is a leading concern in public health. It describes a complex phenotype whose predominant feature is resistance to a wide range of structurally unrelated cytotoxic compounds, many of which are anticancer agents. Multidrug resistance may be also related to antimicrobial drugs, and is known to be one of the most serious global public health threats of this century. Indeed, this phenomenon has increased both mortality and morbidity as a consequence of treatment failures and its incidence in healthcare costs. The large amounts of antibiotics used in human therapies, as well as for farm animals and even for fishes in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. It is not negligible that the ongoing COVID-19 pandemic may further contribute to antimicrobial resistance. In this paper, multidrug resistance and antimicrobial resistance are underlined, focusing on the therapeutic options to overcome these obstacles in drug treatments. Lastly, some recent studies on nanodrug delivery systems have been reviewed since they may represent a significant approach for overcoming resistance.


Subject(s)
Drug Resistance, Multiple , Drug Resistance, Neoplasm , Animals , Drug Resistance, Microbial , Humans , Nanoparticle Drug Delivery System
8.
Antibiotics (Basel) ; 10(1)2021 Jan 19.
Article in English | MEDLINE | ID: covidwho-1067681

ABSTRACT

Antimicrobials have allowed medical advancements over several decades. However, the continuous emergence of antimicrobial resistance restricts efficacy in treating infectious diseases. In this context, the drug repositioning of already known biological active compounds to antimicrobials could represent a useful strategy. In 2002 and 2003, the SARS-CoV pandemic immobilized the Far East regions. However, the drug discovery attempts to study the virus have stopped after the crisis declined. Today's COVID-19 pandemic could probably have been avoided if those efforts against SARS-CoV had continued. Recently, a new coronavirus variant was identified in the UK. Because of this, the search for safe and potent antimicrobials and antivirals is urgent. Apart from antiviral treatment for severe cases of COVID-19, many patients with mild disease without pneumonia or moderate disease with pneumonia have received different classes of antibiotics. Diarylureas are tyrosine kinase inhibitors well known in the art as anticancer agents, which might be useful tools for a reposition as antimicrobials. The first to come onto the market as anticancer was sorafenib, followed by some other active molecules. For this interesting class of organic compounds antimicrobial, antiviral, antithrombotic, antimalarial, and anti-inflammatory properties have been reported in the literature. These numerous properties make these compounds interesting for a new possible pandemic considering that, as well as for other viral infections also for CoVID-19, a multitarget therapeutic strategy could be favorable. This review is meant to be an overview on diarylureas, focusing on their biological activities, not dwelling on the already known antitumor activity. Quite a lot of papers present in the literature underline and highlight the importance of these molecules as versatile scaffolds for the development of new and promising antimicrobials and multitarget agents against new pandemic events.

SELECTION OF CITATIONS
SEARCH DETAIL